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Supplementary Text 
 

1. Data Collection 

We extracted data from https://github.com/CSSEGISandData/COVID-19  (John Hopkins Center for Systems 
Science and Engineering). The date of data access and extraction is March 31, 2020. The data consists of time series 
of case confirmations and deaths by country. We used data for the following countries: France (FR), Italy (IT), 
Spain (SP), Germany (GR), Belgium (BE), Switzerland (SW), Netherlands (NT), United Kingdom (UK) and the US 
(US). We calculated daily case confirmation and death incidence from cumulative counts. 
 
A few entries in the collected data show signs of bulk reporting. The following procedure was performed to 
aggregate data where bulk reporting was suspected. It is applied to both case confirmation and death incidence data: 

• If an increase of more than 1000% was observed between two consecutive dates, the data was aggregated 
over the two-day period and accordingly, incidence is considered to be over the two days. 

• If the number of reported cases was zero on a date, followed by a case incidence of 10 or more, the data 
was aggregated over the two-day period. 

• If two consecutive days had zero incidence, followed by an incidence of 20 or more, the data was 
aggregated over the three-day period. 

 
2. Mathematical model 

 
Standard SEIR model for COVID-19 
We first construct a basic susceptible (S)- exposed (E) – infected (I) – recovered (R) model for COVID-19 and then 
extend upon the basic model. The ordinary differential equations are: 

𝑑𝑆
𝑑𝑡 = −𝛽

𝑆
𝑁 𝐼 

𝑑𝐸
𝑑𝑡 = 𝛽

𝑆
𝑁 𝐼 − 𝑘𝐸 

𝑑𝐼
𝑑𝑡 = 𝑘𝐸 − 	𝛾𝐼 
𝑑𝑅
𝑑𝑡 = 𝛾𝐼 

where	𝑁 is the total number of population, 𝛽 is the infectivity, 1/k is the latent period, i.e. from infection to onset of 
infectiousness, 1/𝛾 is the infectious period. Note that for implicitly, we assumed that R compartment include both 
recovered and dead individuals in this basic model and 𝛾 is the overall rate of individuals leaving I compartment. 
 
We are interested in the dynamics of early exponential growth. We make the common assumption of a constant 
susceptible population (S(t)=N) during this period, and get a reduced EIR model: 

𝑑𝐸
𝑑𝑡 = 𝛽𝐼 − 𝑘𝐸 
𝑑𝐼
𝑑𝑡 = 𝑘𝐸 − 	𝛾𝐼 
𝑑𝑅
𝑑𝑡 = 𝛾𝐼 

The long-term solution of the EIR model is driven by a single exponential whose rate is determined by the dominant 
eigenvalue,	𝜆,  of the Jacobian matrix of the EIR model. The exponential growth rate 𝑟, is thus the same as the 
dominant eigenvalue,	𝜆: 

𝑟 = 𝜆 =
0(𝑘 + 𝛾)! + 4𝑘(𝛽 − 𝛾) − (𝑘 + 𝛾)

2  
For a specific value of the exponential growth rate 𝑟, we can calculate 𝛽 as: 

𝛽 =
1
𝑘 𝑟

! +
𝑘 + 𝛾
𝑘 𝑟 + 𝛾 
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If we let 𝐼∗(𝑡) be the total number of infected individuals, and define that 	𝐼∗(𝑡) = 𝐸(𝑡) + 𝐼(𝑡) = 𝐼#∗𝑒$%, we get the 
following expressions for 𝐸(𝑡) and 𝐼(𝑡): 

𝐼(𝑡) =
𝑘 + 𝑟

𝑘 + 𝑟 + 𝛽 𝐼#
∗𝑒$% 

𝐸(𝑡) =
𝛽

𝑘 + 𝑟 + 𝛽 𝐼#
∗𝑒$% 

 
we calculate the true daily incidence predicted by the model as: 

Ω(𝑡) = 9 𝛽𝐼(𝑠)
%

%&'
𝑑𝑠 = 9 𝛽

𝑘 + 𝑟
𝑘 + 𝑟 + 𝛽 𝐼#

∗𝑒$(
%

%&'
𝑑𝑠 =

𝛽(𝑘 + 𝑟)
𝑟(𝑘 + 𝑟 + 𝛽) 𝐼#

∗;𝑒$% − 𝑒$(%&')< 

 
Extending the model to consider case confirmation 
We extend the EIR model to consider case confirmation. In this model, we consider that among newly infected 
individuals at time t, 𝛽𝐼(t), a fraction, 𝜃(𝑡), of them will be tested at a later time, and it takes 1/g period of time to 
get case confirmation. The ODE model is then: 

𝑑𝐸
𝑑𝑡 = 𝛽𝐼 − 𝑘𝐸 
𝑑𝐼
𝑑𝑡 = 𝑘𝐸 − 	𝛾𝐼 
𝑑𝑅
𝑑𝑡 = 𝛾𝐼 

𝑑𝐶#
𝑑𝑡 = 𝜃(𝑡)𝛽𝐼 − 𝑔𝐶# 

𝑑𝐶'
𝑑𝑡 = 𝑔𝐶# 

where 𝐶# and 𝐶' correspond to the individuals who is tested during infection and the cumulative confirmed cases, 
respectively. 
 
We are interested in new confirmed cases during a day, and thus it is reasonable to assume 𝜃(𝑡) does not change (at 
𝜃%) in one day period. With this assumption, we solve the ODE above, we get: 

𝐶#(𝑡) = 𝜃%
1

(𝑔 + 𝑟)
𝛽(𝑘 + 𝑟)
𝑘 + 𝑟 + 𝛽 𝐼#

∗𝑒$% 

The daily new confirmed case count, Ψ(𝑡), is then: 

Ψ(𝑡) = 9 𝑔𝐶#(𝑠)
%

%&'
𝑑𝑠 = 𝜃%

𝑔
(𝑔 + 𝑟)

𝛽(𝑘 + 𝑟)
𝑟(𝑘 + 𝑟 + 𝛽) 𝐼#

∗;𝑒$% − 𝑒$(%&')< 

= 𝜃%
𝑔

𝑟(𝑔 + 𝑟)Ω
(𝑡) 

 
Extending the EIR model to explicitly consider death 
Now, we extend the EIR model to explicitly consider death of infected individuals. Let X be the case fatality ratio, 
and we assume an Erlang distribution for the period between onset of infectiousness to death. We get the following 
model: 

𝑑𝐼+,'
𝑑𝑡 = 𝑋𝑘𝐸 − 	𝑛𝑑𝐼+,' 

… 
𝑑𝐼+,-
𝑑𝑡 = 𝑛𝑑(𝐼+,-&' −	𝐼+,-) 

𝑑𝐷
𝑑𝑡 = 𝑛𝑑𝐼+,. 

where n is the shape parameter of the Erlang distribution for the period from onset of infectiousness to death, and 
1/d is the mean duration from the beginning of infectious period to death. Note that we assumed that the infected 
individuals who eventually die have the same latent period for simplicity. The sensitivity of our conclusions to this 
assumption is tested in sensitivity analysis where we varied the range of the duration from onset of infectiousness to 
death. 
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Solving the ODEs above, we get: 

𝐼+,/(𝑡) =
(𝑛𝑑)/&'

(𝑟 + 𝑛𝑑)/ 𝑋
𝑘𝛽

𝑘 + 𝑟 + 𝛽 𝐼#
∗𝑒$% ,			𝑖 = 1. . 𝑛 

𝐷(𝑡) = (
𝑛𝑑

𝑟 + 𝑛𝑑)
-𝑋

𝑘𝛽
𝑟(𝑘 + 𝑟 + 𝛽) 𝐼#

∗𝑒$% 

 
Then, the daily death count, Φ(𝑡), is: 

Φ(𝑡) = 9 𝑛𝑑𝐼+,-
%

%&'
𝑑𝑠 = H

𝑛𝑑
𝑟 + 𝑛𝑑I

-

𝑋
𝛽𝑘

𝑟(𝑘 + 𝑟 + 𝛽) 𝐼#
∗;𝑒$% − 𝑒$(%&')< 

= H
𝑛𝑑

𝑟 + 𝑛𝑑I
-

𝑋
𝑘

𝑘 + 𝑟 	Ω
(𝑡) 

 
 

3. Discussion of parameter values and ranges 
 
The latent period, 1/k 
We set 1/k=3 days as a baseline. Previously we and others estimated the incubation period, i.e. the duration between 
infection and symptom onset to be between 4-6 days1-3. It is possible that infectiousness onset starts 1-2 days before 
symptom onset4. Therefore, we set the latent period at 3 days with a range of variation between 2-5 days. 
 
The duration between infection and case confirmation, 1/g 
We set 1/g=8 days as a baseline. Ng. et al., and a previous work our ours estimated the duration from symptom onset 
to case confirmation in Singapore and China, respectively3,5. All works found that this duration decreases over time, 
likely because of awareness of the virus and thus behavior changes in seeking medical care. We took the lower 
bound estimates of the duration from symptom onset to case confirmation in Ng. et al. and our study with a range 
between 2-4 days, because by the time the virus caused major outbreaks in Europe, the virus is well known. If we 
assume an incubation period of 4-6 days. We get a range between 6-10 days for the duration from infection to case 
confirmation. 
 
Distribution of duration from onset of infectiousness to death 
We assumed an Erlang distribution for the duration from onset of infectiousness to death. As shown in Eqn. 4 in the 
main text, a realistic distribution is important for accurate parameter estimation. In the equation, J -+

$0-+
K
-

 are very 
different between n=1 and n>1. That is to say simply assuming an exponential distribution (i.e. n=1) lead to 
erroneous conclusions.  
 
We and other showed that the mean time from symptom onset to death is between 16.5 and 18.5 days3,6,7. We 
estimated a shape parameter of this distribution to be between 4 and 53. Therefore, we set 1/d=18.5 days for the 
mean duration between onset of infectiousness and death with ranges between 16.5 and 20.5 days. 
 
Infection fatality ratio, X 
We set X=0.01 as baseline with ranges between 0.04-0.015. This point estimates and range are consistent with 
several recent studies7,8. 
 

4. Parameter estimation  
 
We fit the daily case confirmation function Ψ(𝑡) and the death count function Φ(𝑡) to incidence data and daily 
death data to infer θ(𝑡), 𝑟 and 𝐼#∗. Other parameter values are fixed according to previous estimates (see Table 1). 
The error is calculated as the residual sum of squares (RSS) between data and model predictions of incidence or 
death counts on a log scale. To compare between models, we calculate the Akaike Information Criterion (AIC) score 
as: 

𝐴𝐼𝐶 = 2𝑚12$ 	+	𝑚+2%2log(𝑅𝑆𝑆/𝑚+2%2) 
where 𝑚12$ is the number of fitted parameters and 𝑚+2%2 is the number of data points used in estimation. 
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5. Uncertainty quantification 
 
To fully evaluate uncertainty in the estimated parameters given the dataset, we took a two-step approach. First, 
evaluate uncertainties in 𝑟 , 	θ(𝑡)  and 𝐼#∗  while keeping other parameters fixed. We take a statistical sampling 
approach, sampling 106 parameter combinations by drawing parameters randomly from uniform distributions over 
the ranges specified in Table 1 and for the detection rate 𝜃, we draw random numbers between 0·001 to 1 on a log 
scale. We accept parameter combinations within 2 Δ𝐴𝐼𝐶 scores of the lowest AIC score using the best-fit parameter 
combinations for each country. Second, to assess how estimation is impacted by uncertainties in variations in the 
fixed parameters, we used upper and lower bounds of the fixed parameter values (as shown in Table 1), and 
performed parameter estimation and assessed uncertainty in the estimated parameter values as described in the first 
step. Using only the upper and lower bounds is justified because the fixed parameters affect the values of the Ψ(𝑡) 
and Φ(𝑡) functions monotonically. Therefore, using the extreme values would give the upper and lower bounds of 
the estimated parameter values. The upper and lower bounds reported in Fig. 1 and 2 were based on simulation 
results using all accepted parameter combinations in the two steps. 
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Table S1. Dates of incidence data used for inference in the main text (15 days) and sensitivity analysis 
showing the estimated growth rate and detection rate are robust to choices of number of data points. 
Country Dates of incidence 

data used for 
inference (15 days) 

Growth rate, r Detection rate, 𝜃 

15 days 
of data 
points  

13 days 
of data 
points 

10 days of 
data 

points 

15 days 
of data 
points  

13 days 
of data 
points 

10 days 
of data 
points 

Belgium Mar. 6 – 21 0.20 0.19 0.19 0.04 0.04 0.04 
France Feb. 29 – Mar. 14 0.22 0.24 0.22 0.03 0.03 0.03 
Germany Mar. 1 – 15 0.24 0.24 0.24 0.23 0.22 0.22 
Italy Feb. 23 – Mar. 8 0.24 0.26 0.28 0.02 0.02 0.02 
Netherlands Mar. 6 – 21 0.19 0.20 0.20 0.03 0.03 0.03 
Spain Mar. 2 – 16 0.29 0.28 0.33 0.02 0.02 0.01 
Switzerland  Mar. 5 – 20 0.19 0.17 0.19 0.09 0.08 0.08 
UK Mar. 5 – 20 0.20 0.21 0.18 0.02 0.02 0.02 
US Mar. 3 – 17 0.28 0.27 0.28 0.04 0.04 0.04 
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Table S2. Comparison of models for the detection rate, 𝜽, using AIC scores. The three models correspond to the 
three models listed in the Methods in the main text. Model 1, i.e. constant 𝜃, is the best model for all 9 countries 
considered (bold AIC scores). 
Country Model 1 

Constant  
Model 2 

Hill-type function 
Model 3 

Linear function 
Belgium -45.6 -39.6 -39.6 
France -35 -29.1 -29 
Germany -43.6 -37.7 -37.6 
Italy,  -58.6 -52.6 -52.6 
Netherlands -75.4 -69.4 -69.4 
Spain -54.8 -49.1 -48.8 
Switzerland  -39.1 -33.4 -33.1 
UK -52.9 -46.9 -46.9 
US -40.9 -35.1 -34.9 
 
 
 
 
 


